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a b s t r a c t

It has been proposed that the ability of humans to quickly perceive numerosity involves a

visual sense of number. Different paradigms of enumeration and numerosity comparison

have produced a gamut of behavioral and neuroimaging data, but there has been no

unified conceptual framework that can explain results across the entire range of

numerosity. The current work tries to address the ongoing debate concerning whether

the same mechanism operates for enumeration of small and large numbers, through a

computational approach. We describe the workings of a single-layered, fully connected

network characterized by self-excitation and recurrent inhibition that operates at both

subitizing and estimation ranges. We show that such a network can account for classic

numerical cognition effects (the distance effect, Fechner's law, Weber fraction for

numerosity comparison) through the network steady state activation response across

different recurrent inhibition values. The model also accounts for fMRI data previously

reported for different enumeration related tasks. The model also allows us to generate an

estimate of the pattern of reaction times in enumeration tasks. Overall, these findings

suggest that a single network architecture can account for both small and large number

processing.

& 2014 Published by Elsevier B.V.

1. Introduction

According to the theory of a visual sense of number (Burr and

Ross, 2008a, 2008b), the ability to rapidly estimate the numer-

osity of a set of items reflects a basic, perceptual process.

Developmental studies have shown that infants show an

ability to distinguish between different numerosities at a

young age (Xu and Spelke, 2000). Studies of non-human

animals, such as cotton-top tamarins (Hauser et al., 2003),

point towards the possible evolutionary origins of the visual
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number sense. It has also been shown that making decisions

based on numerosity is possible even in societies where

language does not have words for distinguishing larger

numbers (Gordon, 2004). The visual number sense also seems

to distinguish between a range of smaller numbers (the

subitizing range: Kaufman et al., 1949) and the range of larger

numbers. Numbers in the subitizing range are characterized

by their rapid and confident enumeration with very high

degree of accuracy. For larger numbers humans use one of

the two strategies – (1) precise sequential counting, or (2)

estimation, a rapid but inexact process of enumeration.

Counting is precise but is much slower than either subitizing

or estimation. Estimation, although faster than counting, is

much less precise (Whalen et al., 1999). An important ques-

tion, then, is whether subitizing and estimation share a

common mechanism and thus possibly a common substrate.

To even begin to understand how to disambiguate the

answer we have to address certain complexities. In the visual

domain, it has been argued that enumeration can be linked to

object individuation, a visuo-spatial mechanism that allows

us to locate and track a limited set size of objects (Piazza

et al., 2011; Melcher and Piazza, 2011). In contrast, another

approach has been to characterize subitizing as estimation

mechanism operating at small numbers (Gallistel and

Gelman, 1992; Dehaene and Changeux, 1993). However, the

different Weber fractions1 over the two ranges suggest a

fundamental distinction based on small or large numerosities

(Revkin et al., 2008). Trick and Pylyshyn (1994) have suggested

subitizing, unlike estimation, might employ pre-attentive

mechanisms that index potential objects. Burr et al. (2010)

have systematically manipulated both spatial and temporal

attention to show that such manipulations indeed affect

subitizing performance but not estimation, which led them

to suggest that in addition to a possible pre-attentive

mechanism that is active across all numerosities there is an

additional attentive mechanisms necessary for enumeration

within subitizing range.

In order to explore possible computational strategies for

enumeration Dehaene and Changeux (1993) developed a

model using a reinforcement-based supervised learning

approach (with a proposed extension towards self-organiza-

tion) to explain possible learning mechanisms in infants.

However this model restricts enumeration only up to five

items. As another possible solution Stoianov and Zorzi (2012)

have trained ‘deep’ networks to use pixel by pixel informa-

tion of images through unsupervised learning. They show

that numerosity detectors can emerge in the highest level of

the generative network. Their model could account satisfac-

torily for numerosity comparison task data in monkeys and

human adults in the larger number (estimation, not subitiz-

ing) range. These numerosity detectors can be compared to

the ‘number neurons’ reported by Nieder et al. (2002) and

Roitman et al. (2007). Both the models mentioned above have

complex structures that allow for learning of numerosity

detectors. Another interesting model was developed by

Grossberg and Repin (2003), based on an on-center off-

surround architecture. This model involved an interaction

between a spatial number map and semantic categories to

explain error rates and reaction times in human numerosity

comparison data. In the present work we wanted to investi-

gate what properties a network of numerosity detectors

should have in order to account for enumeration perfor-

mance across both small and large numbers of items.

Building on work from Roggeman et al. (2010), we con-

structed a recurrent on-center off-surround network that

receives a normalized pre-processed input and the output is

the mean steady state activity of the network. This kind of

network has been used to describe different kinds of phe-

nomena in the domain of vision and working memory

(Grossberg, 1973; Usher and Cohen, 1999). However any

computational account of numerosity has to pass a few

crucial tests: (a) the model simulations should qualitatively

demonstrate how the different regimes of numerosity (sub-

itization and estimation) emerge through internal network

dynamics; (b) the model should be able to account for

empirical findings like numerosity comparison data in

human adults; and (c) it should be possible to make testable

predictions from the model. In the following sections we will

try to show how the proposed model fares under these

conditions.

One advantage of our approach is that it does not start

with dedicated number neurons that activate to specific

number estimates, but attempts instead to see whether such

capacities might emerge from a recurrent on-center off-

surround network used more generally in perception of

objects and scenes. A second aspect of our approach is that,

rather than trying to fit the data with a model based on a

large number of parameters, the proposed network has fewer

number of parameters and the same network has been used

to fit disparate data sets. Finally, we are able to generate

novel testable predictions that emerged from the model itself

regarding the link between sensory processing and numerical

cognition.

2. Results

2.1. Model

We began by modeling critical features of a recurrent on-

center off-surround network reported in Usher and Cohen

(1999) and used in Roggeman et al. (2010). It is essentially a

saliency map model based on the nonlinear leaky competing

accumulation models (LCA) that have been used to account

for performance in multiple-alternative choice paradigms

(Bogacz et al., 2007). These models capture the recurrent on-

center and off-surround nature of activity observed in neural

systems (Grossberg, 1973; von der Malsburg and Buhmann,

1992) particularly in the visual modality.

The network consists of a single layer of completely

interconnected nodes (Fig. 1). Each node corresponds to a

neuronal assembly encoding an object or location of an object

(or particular features) depending upon the cognitive phe-

nomenon being modeled. The three main parameters that

define the type of network are α (strength of self-excitation

1Weber fraction or Weber ratio refers to the minimum relative

change in stimulus intensity in order for the stimulus level to be

perceived as different from a reference stimulus intensity.
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for each node), β (strength of lateral inhibition between

nodes) and λ (decay constant for the passive decay term).

The differential equation governing the time-evolution of

the network of N nodes is given by

dxi
dt

¼ �λxi þ αFðxiÞ�β ∑
N

j ¼ 1; ja i

FðxjÞ þ Ii þ noise ð1Þ

xi(t) is the activation of node i at time t. Ii represents the

intensity of external input ð8 i; 0r Iir1Þ. In our simulation Ii
is a unit step function, i.e., it has the value 1 for certain

number of time steps for the particular node i and 0 for rest of

the time steps. Input is only presented for a finite amount of

time, typically much less than total time of simulation. F(x) is

the activation function given by the formula

FðxÞ ¼
0 for xr0
x

1þx for x40

(

ð2Þ

The total number of nodes receiving input is referred to as

set size in rest of the article. In order to remain close to

cortical neuronal dynamics we chose to keep the decay

parameter λ¼1.

We modeled the dynamics according to the discrete form

of Eq. (1). The activation of the nodes is updated at each step

according to the following equation:

xiðtÞ ¼ αFðxiðt�1ÞÞ�β ∑
N

j ¼ 1; ja i

Fðxjðt�1ÞÞ þ Ii þ noise ð3Þ

Following the example of Roggeman et al. (2010), we used

a network of 70 nodes (N¼70) for the present work as higher

values of N do not change the results qualitatively. All the

simulations were run at fixed α¼2.2.2 The input was

presented for 5 time steps and the simulations were run

for a total of 50 time steps. A normal distribution of mean 0

and standard deviation 0.03 is used to sample the noise at

each time step. As can be seen in Eq. (13) in Appendix A, that

in the absence of external input the network settles to

steady state dynamics characterized by its steady state

activation x(n), where n is the number of nodes in steady

state activity. This quantity is uniquely determined by the

network parameters α, β, and n (but not on the size of the

network, i.e., N). So we use mean activation ðxðnÞ ¼∑xi=NÞ
3 as

the main output of the network for the remainder of the

paper. Table 1 lists the major parameters used for simula-

tion throughout the study.

2.2. Subitizing and estimation from network output at

different inhibition levels

Considering that the transient input is converted into steady

state activity for the current network, we wanted to see the

sensitivity of the network output, i.e., the mean activation

ðxðnÞÞ with the parametric variation of β and set size. We

considered that the parameters suitable for numerosity

estimation would be the ones that give a monotonically

increasing variation of the mean activation with the increase

in numerosity of the inputs. The plot of mean steady state

activation of the network as a function of the set size and the

Fig. 2 – Mean activation vs. set size and β. The plot was

derived at α¼2.2 as an average of 100 simulations. The

insets show the mean activation vs. set size plot for three

particular β values – low: 0.01 (bottom inset), medium: 0.1

(middle inset), and high: 0.15 (top inset). The vertical line in

the insets denotes the limits to the monotonic region. For

instance we can see from the top inset that the mean

activation ðxðnÞÞ is monotonically increasing up to set size 4

for high β, but for low β (bottom inset) we can see that xðnÞ is

monotonically increasing with numerosity for set sizes

greater than 15. The dashed lines in the insets provide the

limits of the monotonic region in the insets.

Fig. 1 – Illustration of the on-center off-surround model,

showing nodes with excitatory and inhibitory connections.

Table 1 – Simulation parameters.

Parameter Value

N 70

α 2.2

β Range 0.01–

0.15

Duration of stimulus presentation (no. of time steps) 5

Total duration of simulation in time steps 50

Number of simulations run to compute the average 100

2The excitation parameter was chosen in line with Usher and

Cohen (1999). The excitation parameter was varied systematically

between 2.0 and 2.4 to check for stability. The convergence

results are shown in Appendix C.

3Here xi is the final activity of the node i at the end of

simulation. It is either 0 or close to the value given in Eq. (13) in

Appendix A. Or written in another way, xðnÞ ¼ nxðnÞ=N in the

absence of noise, where x(n) is the steady state activation values

of the nodes as given by Eq. (13).
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inhibition parameter is given in Fig. 2. The input was clamped

at level 0.334 for this and subsequent simulations. Other

simulation parameters are given in Table 1.

It is evident that at medium inhibition the total activation

of the network is sensitive to a smaller range values of

numerosity (see the lower plot in inset of Fig. 2) while low

inhibition seems to function better for larger numerosities

(range of 15–40, see the upper plot in inset of Fig. 2). Moreover,

the plot shows that at higher values of β the total activation

of the network is fairly insensitive to larger numerosity and

at low b the network activation does not monotonically

increase as a function of numerosity for smaller numbers.

The finding, that different inhibition parameters work best

for representing different numerosities, confirms the pre-

vious report of Roggeman et al. (2010).

2.3. Truthfulness of representations

Although lower β-values are more sensitive to larger numer-

osities, the precision of the representation is compromised at

lower inhibition values. In order to illustrate the point, we

can construct a crude measure for the probability of faithful-

ness of representation ðPðβ; setsizeÞÞ as

Pðβ; setsizeÞ ¼ 1�di=o ð4Þ

where di/o is the mean Hamming distance5 between input

activation pattern and output activation pattern over N nodes

parametrized over inhibition parameter β and setsize. The

simulation parameters are the same as in Table 1. Fig. 3

illustrates that at lower inhibition the maximum value of

Pðβ; setsizeÞ is around 0.6, although lower inhibition is better

for estimation of larger numerosities (see Fig. 2). At lower β

enumeration should be more prone to errors and inaccura-

cies due to more diffused representation. This finding is in

line with numerous behavioral studies indicating that preci-

sion is reduced for estimation of large numerosities.

It is interesting to note that, from a purely representa-

tional point of view, Fig. 3 differentiates three types of

phenomena – (1) at high inhibition (β¼0.15), focused repre-

sentation of a single object, (2) at medium inhibition (β�0.1),

specialized subitizing and (3) at low inhibition, estimation. All

of these behaviors are emergent from the self-organized

behavior of the network.

2.4. Numerosity comparison

In order to simulate human numerosity comparison data, we

calculated the probability that a given numerosity would be

judged to be ‘larger’ than a given reference numerosity (16, in

our case). The probability of responding ‘larger’ is calculated

by running 100 simulations for numerosity values 10–24 for

different β values (the parameters of the network are the

same as in Table 1), as the proportion of times the mean

activation of the network for a given numerosity is larger

than the mean activation of the network for the reference

numerosity by threshold value (δ¼0.01). In other words the

probability that numerosity m will be perceived ‘larger’ than a

predefined reference numerosity ref is given by

Probm response larger
� �

¼
Number of times xmðnÞ�xref ðnÞ

� �

4δ

Number of simulations
ð5Þ

where xref ðnÞ and xmðnÞ are mean activation values of the

network when they are presented with numerosities ref and

m respectively.

As shown in Fig. 4, performance differs depending on the β

values. However, if we calculate the probability as an average

over different β values (0.01, 0.011, 0.012 and 0.03), and

perform a sigmoid fit against the numerosity ratio, we get a

Weber fraction of 0.14 calculated at 75% performance value

(r2¼0.93 at 95% confidence level), which matches closely with

human data collected by Piazza et al. (2004) (see Fig. 5).

Fig. 3 – P(β, setsize) plotted against setsize for different β. The

modeling parameters are given in Table 1. The figure shows

how probability of faithful representation decreases with

decreasing β.

Fig. 4 – Probability of finding a given numerosity larger than the

reference numerosity 16 plotted against numerosity ratios.

4Clamping here is analogous to electrophysiological practices

where a constant d.c. like current with a certain amplitude is

applied to the neuron/synapse for a finite time. Here the input

amplitude is 0.33.
5The distance between two binary vectors that is equal to the

number of bits that do not match between the vectors. For

example, the Hamming distance between 010101 and 011111 is 2.
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Interestingly, at higher β values the probability of response

‘larger’ decreases and probability of response ‘smaller’ (i.e., 1

– probability of response ‘larger’) increases (see Fig. 6) show-

ing that it might be possible that when comparing numer-

osities at higher β, one might see underestimation.

For smaller numerosities, we wanted to see if our model

shows the classic distance effect and follows Fechner's law

(Dehaene and Changeux, 1993). Distance effect refers to the

finding that performance is better when the distance between

the numbers to compare increases. Fechner’s law is an

extension of Weber’s law, and states that perceptual judg-

ments of magnitude are proportional to the logarithm of the

stimulus intensity. Similar to Eq. (5) we calculate the dis-

crimination probability of each numerosity i¼1–5 against the

reference numerosity ref¼1–5 as

Probi response different
� �

¼
Number of times jxref ðnÞ�xiðnÞj4d

Number of simulations
ð6Þ

where the symbols have the same meaning as above. As we

are operating in the subitizing range we chose to calculate the

probability as an average of β¼0.06, 0.08, 0.1, 0.14–0.15

(δ¼0.01) for this simulation. Fig. 7 represents the Probi
ðresponse differentÞ matrix for each reference numerosity

(1–5) and compared numerosity (1–5), the area of the circles

representing the magnitude of the probability (largest circles

at top left and bottom right have value 1). Observing the

probability values adjacent to the diagonal line, we can see

that the overall precision decreases with increasing numer-

osity (i.e., from 1 to 5). Whereas for same numerical distance

(like 2–3, 3–4, 4–5 pairs), we see that the probability for

discrimination is higher at lower numerosity. The results

indicate that performance is better when the difference

between the numbers to compare is larger (Distance Effect)

and the decrease in precision observed for higher numeros-

ities is consistent with Fechner's Law (although results in Fig. 7

conform to Fechner's logarithmic scaling, they are not shown

here). Thus Fig. 7 illustrates that the distance effect and

Fechner's law emerge from the model.

2.5. Empirical evidence for the inhibition parameter

In line with the results of Melcher and Piazza (2011), the

behavior of this on-center off-surround model depends on

the inhibition between nodes (Fig. 1). In the case of high

Fig. 5 – Simulation of human numerosity comparison data

by averaging the probability values at different β (0.01, 0.011,

0.012, 0.03).

Fig. 6 – Probability of ‘smaller’ response for different

numerosities for reference numerosity 16. The plot shows

how at higher inhibition numerosity underestimation is

possible.

Fig. 7 – We show pairwise discrimination probability

between different numerosities 1–5. The probability is

proportional to the areas of the circles at each point. The

largest area is 1 and the smallest ones adjacent to top right

corner being 0.03. As we move towards the top right corner

the circle sizes decrease, i.e., the overall precision of

discrimination suffers with increasing numerosity. As one

moves away from the diagonal in figure, discrimination

performance increases, demonstrating distance effect where

numerosity discrimination performance is better if the

compared numerosities are more distant. And the

discrimination probability between 1–2, 2–3, 3–4 and 4–5

pairs show a decrease in precision for higher numerosities

consistent with Fechner's law (see text for more details).
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inhibition (top inset of Fig. 2), the pattern resembles that

reported previously in fMRI studies of visual working mem-

ory, with activation increasing up to around 4 items (Todd

and Marois, 2004, 2005; Kawasaki et al., 2008). Varying the

inhibition parameter (β) results in different patterns of acti-

vation. The graph for medium inhibition (middle inset of

Fig. 2) successfully models the activity of fMRI data for

enumeration tasks Roggeman et al. (2010). Here the activation

flattens out at about 6 items. For low inhibition, the predic-

tion is shown as a concave curve shown in the bottom inset

of Fig. 2. The model's prediction of a concave curve is well

supported by data published in Roggeman et al. (2010). Their

data was collected for the lateral intraparietal (LIP) area, and

thus provide a hypothesis for localization of such a numer-

osity network in the brain that is also consistent with other

numerosity related findings (e.g., Roitman et al., 2007).

2.6. Estimation of reaction times from the model

In order to explore the parametric space of the network we

modeled an energy function on the following lines (see

Appendix B)

H¼∑
i

Hip�∑
i

Z

1�α
FðxiÞ

xi

� �2
 !

_x2i dt ð7Þ

_xi ¼ dxi=dt and Hi is the energy for a particular node i.

The reaction time distribution is assumed to correlate

with the total amount of allowed fluctuation energy at a

given state (as shown in Appendix B), i.e.,

RT�∑
i

Z

1�α
FðxiÞ

xi

� �2
 !

_x2i dt ð8Þ

The simulated values for RT were obtained as an average

of 100 simulations. The modeling parameters are given in

Table 1. Fig. 8 shows the RT values for a given inhibition

parameter and set size for a network with 70 nodes. It seems

to be consistent with the general idea that subitizing

(enumeration of small numbers) is faster than estimation

(enumeration of large numbers).

However, this simulation also offers some interesting

features when considering the mean activation value of the

network. From Fig. 2 we can see that higher inhibition (β�0.1)

is better for representing small numerosity ranges including

the subitizing range, while lower inhibition (β�0.03) is more

suited for larger numerosity estimation. Fig. 8 (bottom inset)

shows the estimated RT values for the different levels of

inhibition (low or high). It shows a nearly linear increase in

reaction times for numerosities in the subitizing range. The

reaction times for the large numerosity ranges remain very

similar for a wide range of β value. This effect has been well

known and demonstrated by Kaufman et al. (1949). The RT

values for enumeration in small numerosity range at low β

tend to be higher. So if a network tries to enumerate smaller

numerosity at low inhibition, then the reaction time should

be higher than reaction time for enumerating the same at

higher inhibition.

3. Discussion

3.1. The model

In the current work we presented a single layer recurrent

neural network with complete interconnectivity between

nodes that cooperate and compete with each other through

mechanisms of self-excitation and lateral inhibition after

being presented with finite transient normalized input. Once

the transient input is taken away, the network settles down

to a steady state activity (x(n)) governed by the strength of

lateral inhibition (β) between nodes. The network's behavior

can be explored by varying β and observing values of x(n) for

different sizes of input (set sizes).

We have used mean activation ðxðnÞÞ as the main output of

the network in order to parameterize it against different β

and set sizes. The condition that mean activation of the

network should increase monotonically with set size gave us

two regimes of set sizes governed by two different β values –

higher β for smaller numbers and lower β for larger numbers

(see Fig. 2).6 The measure for the probability of faithfulness of

representation (P(β, setsize)) shows, that although lower β is

needed for enumeration of larger numbers, the representa-

tion becomes coarser and thus more prone to errors. More-

over, we saw that although P(β, setsize) is almost linear for

larger numerosities, it is near constant for smaller numer-

osities, thus indicating a possible reason that precision levels

for enumeration differ significantly between the subitizing

and the estimation range (see Fig. 3).

We estimated the probability that a particular numerosity

would be judged as ‘larger’ than a given reference numerosity

(16, in our case) on the basis of the fraction of times the mean

Fig. 8 – A parametric display of the reaction time distribution

as calculated from the model. The values are meant to be

proportional to log(RT) rather than directly representations.

The top inset shows the contour plot for the energy surface

and bottom inset shows the prediction for the reaction times

for set sizes 1–32 at β¼0.03, β¼0.05, β¼0.08 and β¼0.1.

6Here we have used the additive variant of on-center off-

surround activity rather than the shunting one (where excitation

terms are multiplied by B�x and inhibitory terms are multiplied

by x�C, where B and C are excitation and inhibition parameters,

see Grossberg (1973), as the additive function gives us the

monotonic property of the mean activation of the network with

numerosity unlike the shunting variant.
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activation xðnÞ for that particular network is larger than that

of the reference numerosity. Empirical data observed by

Piazza et al. (2004) shows that for reference numerosity 16,

numerosity comparison data could be fitted to a sigmoid

curve corresponding to Weber fraction (w) of 0.15. Although

one particular b could not explain the spread of the data,

using an average of different β values allowed for a good fit

(w¼0.14, r2¼0.93 at 95% confidence level) to human numer-

osity comparison data collected by Piazza et al. (2004) (see

Fig. 5). At higher β, the model could successfully capture (see

Fig. 7) the distance effect (the same-different judgment perfor-

mance is better when the distance between the numbers to

compare increases) and Fechner's law (perceptual judgments

of magnitude being proportional to the logarithm of the

stimulus intensity).

Finally, the mean activation values for different set sizes

were consistent with fMRI response data. Roggeman et al.

(2010) also presented results showing a different level of

inhibition β involved in numerosity comparison as opposed

to explicit enumeration. The β level found in their compar-

ison experiment is line with the β values taken for modeling

numerosity comparison data. From these experiments LIP

area emerges as a possible neural substrate for the proposed

network.

3.2. Comparison with other models

There have been limited attempts at a unified computational

approach towards numerosity. This is due to the fact that

human performances in subitizing and estimation ranges are

clearly distinct – both in terms of performance measures like

Weber fractions (Burr et al., 2010), precision (Revkin et al.,

2008) as well as reaction time (Kaufman et al., 1949). The

differences in empirical data for the two numerosity ranges

suggested the possibility of different enumeration mechan-

isms involved in subitizing and estimation. Dehaene and

Changeux (1993) suggested a model based on supervised

learning through ordered numerosity detectors and were able

to demonstrate the distance effect and Fechner's law for numer-

osities 1–5. Stoianov and Zorzi (2012) trained hierarchical

generative networks to use the statistical properties of

images in order to develop numerosity detectors in an

unsupervised manner at the highest level of the network.

Their work was able to simulate adult human numerosity

comparison data in the larger ranges of numerosity. Our

model falls somewhere in-between these two extremes. Our

network is unsupervised to the extent that there is no

reinforcement involved. However, the network has no learn-

ing component like the previous two networks. We can say

that our network demonstrates the self-organization process

required for the formation of numerosity detectors that arrive

through learning in a hierarchical network proposed by

Stoianov and Zorzi (2012).

We proposed a network that responds to numerosity as a

normalized input and we used the output steady state

activity to characterize the network response. Interestingly,

it removes a limitation of the networks proposed by Stoianov

and Zorzi (2012) and Dehaene and Changeux (1993). The

former does not address the subitizing range whereas

the latter does not work well in the estimation range. Thus

the earlier models seem to assume a break between estima-

tion and subitizing ranges.

The model developed by Grossberg and Repin (2003), based

on a similar on-center off-surround architecture, was used to

account for data in numerosity comparison tasks and pro-

vided an explanation of how the mapping from spatial to

actual linguistic number categories might take place. In the

current work, the question was what mechanisms might

underlie the spatial map itself, whose activation may then

be read off to produce actual responses through other higher

order networks (similar to the one used in Grossberg and

Repin (2003)). In agreement with Grossberg and Repin (2003)

and also Roggeman et al. (2010), our results show how

capacity limits can emerge out of inhibitory interactions

between nodes in a spatial saliency map.

In our case, the constraint that network mean activation

should monotonically increase with numerosity allows the

two regimes to emerge naturally on the basis of different

recurrent inhibition within the same network. Task depen-

dent fMRI response correlates well with the predicted pattern

for mean activation (e.g. in Roggeman et al. (2010)), and thus

gives a possible physical basis for inhibition parameter as

well as indicates a possible neural substrate in the networks

of lateral intraparietal cortex (LIP) common to visual–spatial

attention as well as visual short-term memory networks

(Gottlieb and Goldberg, 1999; Vogel and Machizawa, 2004).

The network also seems to provide an interesting idea that

numerosity comparison data emerges as an average response

across a range of recurrent inhibition thus matching the

success of Stoianov and Zorzi's network. The model also

allows for variable precision between different ranges of

numerosity as depicted in Fig. 3 and also able to account

for distance effect and Fechner's law similar to Dehaene and

Changeux (1993) (see Fig. 7).

The key feature of the present network is that it is able to

give a comprehensive account of a host of observed phenom-

ena within both subitizing and estimation range through a

single layer network with one tuning parameter (β). Because

of the simplicity, such network could be theoretically ana-

lyzed through energy function formulation (see Appendices A

and B), which is a novel contribution of our approach. The

advantage of our network is that such a generic network can

not only explain previous experimental data but also give

novel predictions. It can also be easily coupled with other

components in order to explore learning and multi-modal

interactions.

3.3. Possible mechanisms for modulating the inhibition

parameter

An important feature of the model proposed here is that the

network gives task-dependent response profiles that are

contingent upon varying the strength of lateral inhibition β.

So it is natural to ask the question regarding possible

mechanism for changing inhibition. Task dependent changes

might be motivated by top-down influence. However,

modulation of inhibition within the same task leads to

the possibility that there might be an internal mechanism

for β modulation. A simple additional summator node that
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receives input from all the nodes and gives feedback to the

entire network based on a threshold might provide a

mechanism for modulating the recurrent inhibition from

within the network.

3.4. Possible implications of modeling reaction time

Following the success of the network in predicting behavioral

performances in numerosity comparison, we tried a different

approach. In order to extract new testable predictions from

the model we formulated a possible expression for reaction

time or its close correlate. We took averages of the RT

values at two different inhibition ranges (high: 0.08–0.11,

low: 0.03–0.06) in order to elucidate what happens to RT when

one tries to enumerate in the small numerosity range with

low β or enumerate in the large numerosity range with high β.

The model predicts an asymmetry or hysteresis in the

reaction times for enumeration of small and large numer-

osities depending on whether they were preceded by a set of

small or large numerosities. We reason that the network will

generally be in a low β state if it is engaged in larger

numerosity enumeration tasks and in a state of higher β if

it is engaged in repeated enumeration tasks with smaller

numerosity. Thus if the network is presented with a small

numerosity enumeration task followed by a chain of large

numerosity estimation tasks, the reaction times should be

higher, whereas no such significant increase in reaction time

should be observed in the other direction (i.e., large numer-

osity estimation task followed by a set of small numerosity

enumeration tasks).

To get a clear prediction, we computed the average RT

values for low β range (0.02–0.05) and high β range (0.08–0.11).

Fig. 9 clearly shows that task switch between small numer-

osity enumeration and large numerosity enumeration should

yield asymmetric switch cost depending on whether the

switch was small to large or large to small enumeration.

Moreover, we saw from Fig. 6 that enumeration of large

numerosity from a higher β state increases probability of

underestimation. Thus we arrive at two interesting predictions

for an experiment, where a series of enumeration trials where

varying lengths of small numerosity enumeration blocks are

interspersed with varying lengths of large numerosity enu-

meration trials. First, for small numerosity enumeration fol-

lowed directly by large numerosity estimation trials, the

model would predict higher RT compared to standard small

numerosity enumeration trials. On the other hand, for large

numerosity trials directly followed by small numerosity enu-

meration, we would predict more underestimation effect than

standard large numerosity enumeration trials.

4. Conclusion

The current results have implications towards the debate

regarding whether subitizing and estimation reflect unique

mechanisms that utilize different neural correlates (Dehaene

and Changeux, 1993; Whalen et al., 1999; Revkin et al., 2008;

Melcher and Piazza, 2011). The current model shows how the

same network could account for both subitizing and estima-

tion performance. In terms of neural instantiation, a single

flexible network could account for both types of performance.

At a later stage, population decoding could map the pattern

of activity onto approximate number. Given the close link

between attention and subitizing, Burr et al. (2010) have

suggested that while a shared pre-attentive mechanism

might operate for both subitizing and estimation, additional

attentional resources are pooled for subitizing. We suggest an

alternative, in which it is the task dependent top-down

modulation of the recurrent inhibition that separates the

subitizing and estimation ranges. It is interesting to note that

the model predicts higher energy values for higher inhibition

(see Appendix B). So it might be that energy expenditure has

to be made in order for the network to operate at a higher

inhibition regime. And perhaps attention is needed to change

to higher inhibition. Overall, the current work demonstrates

how a saliency map model related to capacity limits and

individuation found in basic sensori-motor processes can be

used to individuate small numerosities or represent the

numerosity of an ensemble of items.
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Appendix A

Stability analysis

The differential equation governing the time-evolution of

the network of N nodes is given by

dxi
dt

¼ �λxi þ αFðxiÞ�β ∑
N

j ¼ 1; ja i

FðxjÞ þ Ii þ noise ð9Þ

Fig. 9 – Average RT values for two ranges of β: high – 0.08–

0.11 and low – 0.02–0.05. The larger numerosity ranges

hardly differ in RT between the two ranges of inhibition,

however the small numerosity range differs quite

significantly in RT between the two beta ranges.
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xi(t) is the activation of node i at time t. Ii represents the

intensity of external input ð8 i; 0r Iir1Þ, it is zero if the

stimulus is absent for a particular node at that time point.

Input is only presented for a finite amount of time, typically

much less than total time of simulation. F(x) is the activation

function given by the formula

FðxÞ ¼
0 for xr0
x

1þx for x40

(

ð10Þ

The network should reach steady state activity when the

external input is taken away. If we disregard noise, at steady

state, i.e. when, dxi=dt¼ 0,

λxi ¼ αFðxiÞ�β ∑
N

j ¼ 1; ja i

FðxjÞ ð11Þ

As the equation is symmetric under permutation of units,

the system should have symmetric solutions characterized

by number of active units n, and their activation x(n), all other

units having 0 activation.

xðnÞ ¼
α�ðn�1Þβ

λ

� �

FðxðnÞÞ ð12Þ

Using Eq. (10), we get

xðnÞ ¼
α�ðn�1Þβ

λ

� �

�1 ð13Þ

Noise can bring in additional fluctuation that can desta-

bilize the solution for a pair of active modes (with equal

activation according to Eq. (13)), unless the difference of

activations between the said nodes Δx¼xi�xj decays. Using

Eqs. (9) and (13) we get

dΔx

dt
¼Δx �λþ λ2

αþ β

ðα�ðn�1ÞβÞ2

� �� 	

ð14Þ

Thus the fluctuation decays only if dΔx=dto0, i.e.,

αþ β

ðα�ðn�1ÞβÞ2
o

1

λ
ð15Þ

As we can see that the decay parameter, excitation

parameter and inhibition parameter are not completely

independent for stable solutions. For the present purposes

we use λ¼1.

Appendix B

Formulation for the expression of reaction time

In order to explore the stability of the network in a more

rigorous manner, we worked to derive an expression for a

Hamiltonian (or energy function) for such a network from

first principles. A desirable property for such a Hamiltonian

should be that it exhibits properties of a Lyapunov function

under suitable range of parameter choices.

According to classical mechanics for a set of generalized

co-ordinates x, the time evolution according to the Hamilto-

nian principle is given by

∂x

∂t
p

∂H

∂_x
ð16Þ

∂_x

∂t
p�

∂H

∂x
ð17Þ

where H is the Hamiltonian (or the energy) of the system. In

the present system the activations of the nodes can be taken

as generalized co-ordinates for the system. Given Eqs. (16)

and (17) we can roughly say that at any point in time

evolution (considering λ¼1 and proportionality constant as

1) disregarding noise, the Hamiltonian equation for a parti-

cular node i is given by

dHip
∂H

∂_xi
d_xi þ

∂H

∂xi
dxi ¼ k1 _xid_xi�k2 €xidxi ð18Þ

where k1 and k2 are proportionality constants (it is reasonable

to assume that k1ak2). Now from Eq. (9) we have

d _xi ¼ �dxi þ α
FðxiÞ

xi

� �2

dxi ð19Þ

€xi ¼ � _xi þ α
FðxiÞ

xi

� �2

_xi ð20Þ

Inserting Eqs. (19) and (20) in Eq. (18) we get

dHi ¼ � k1�k2ð Þ 1�a
FðxiÞ

xi

� �2
 !

x ̇2i dt ð21Þ

and the total energy

H¼∑
i

Hip�∑
i

Z

1�α
FðxiÞ

xi

� �2
 !

_x2i dt ð22Þ

From Eq. (13) we can substitute terms in steady state to get

Hp�∑
i

Z

1�
α

ðα�ðn�1ÞβÞ2

� �

_x2i dt ð23Þ

Now if dHo0 and thus a monotonically decreasing Lyapu-

nov type function in absence of external input, we have the

stability condition as

α

ðα�ðn�1ÞβÞ2
o1 ð24Þ

Comparing this to Eq. (15), we can see that the conditions

derived from the energy value is slightly different and

diverges greatly for higher β. This is due to the fact that Eq.

(15) excludes winner-take-all mechanisms operating at

higher inhibition, whereas the energy function does not.

And it is evident that for all β,

α

ðα�ðn�1ÞβÞ2
o

αþ β

ðα�ðn�1ÞβÞ2
o1 ð25Þ

and thus the energy function is a very suitable candidate for

the network as it is in line with the stability analysis derived

from the dynamics of the network. However, there was an

implicit assumption in the analysis presented here, mainly

k14k2, which is justified as otherwise the system will not

reach convergent solution. Interestingly as mean activation

values are higher at lower β, it stands to reason that higher

inhibition will also have higher energy than the lower ones.

In order to apply the equation to get to reaction time (RT)

distribution, we assume that reaction times correlate with

the allowed fluctuation in energy (i.e., �
R

dH). More energy to

dissipate, more the reaction time. And thus

RT� �

Z

dHp∑

Z

1�α
FðxiÞ

xi

� �2
 !

_x2i dt ð26Þ

We know from Mohamed et al. (2004) and Yarkoni et al.

(2009) that reaction times do correlate with highest values of
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cortical activation and also be used to predict trial-by-trial

variability in reaction times. We have seen from Fig. 2 and the

corresponding discussion in Section 2 that experimental fMRI

activation patterns correspond to the integral activity of the

network, which in turn correlates with the RT given in

Eq. (26), thus the choice of the formula for RT seems

reasonable.

Appendix C

Effect of αand noise on convergence

Here we want to show how changes in α and noise affect

the overall behavior of the network. In order to do so we ran

simulations for mean activation x(n) and log 10(RT) values

Fig. 11 – Variation in Reaction Times log 10(RT) pattern plotted for three β values (0.01, 0.1, and 0.15) and their variation with

changing α and noise. The left column shows variation of log 10(RT) with α at constant level of noise (standard deviation 0.01)

and the right column shows the variation of x(n) at constant α¼2.0 at different noise levels.

Fig. 10 – Variation in mean activation (x(n)) pattern plotted for three β values (0.01, 0.1, and 0.15) and their variation with

changing α and noise. The left column shows variation of x(n) with α at constant level of noise (standard deviation 0.01) and the

right column shows the variation of x(n) at constant α¼2.0 at different noise levels.
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calculated for (1) constant noise (sampled from normal dis-

tribution of mean 0 and standard deviation 0.01) and variable

α (2.0–2.4) and (2) constant α (2.0) and variable noise (sampled

from normal distribution with mean 0 and standard deviation

0.01–0.05). The rest of the simulation parameters remain the

same as in Table 1. The results are given in Figs. 10 and 11.

Figures depict how different interesting behavior emerges out

of manipulation of noise and α. However, there is a lot of

similarity in the qualitative behavior as well. So we have

chosen α¼2.2 and noise of standard deviation 0.03 in the main

simulations reported in the paper in order to probe a wide

range of behaviors while varying the least number of

parameters.
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